Oil is highly flammable and spills can easily catch fire if not properly contained. Disposal plastics and other oil products take hundreds of years to break down in the natural environment and can easily build up in bodies of water. Supplies of these different types of fuel are subject to market swings and imbalances at oil refineries depending on which fuel is more economical to produce. Byproducts generated by oil extraction can contain radioactive waste. The viability of carbon sequestration technology is not at the point that it is easily scalable.

How Does It Work?

1. Oil is placed into a pressurized container and combusted.
2. Exhaust gasses are created that are transported to a turbine.
3. The exhaust gasses push the turbine to generate electricity that is transported onto the grid.
4. Exhaust gasses are either recovered and placed back into the system to push the turbine or disposed of.
5. Exhaust gasses can be used to heat additional containers of water to produce steam.
6. Steam is transported to a turbine that is turned using the pressurized steam.

Did You Know?

Oil is measured in barrels, which is equivalent to 42 U.S. gallons or 159 liters.

What's Next?

More efficient storing and transportation options available to drillers have reduced the practice of flaring excess natural gas from oil wells. The excess natural gas can be captured and utilized as an energy source alongside the crude oil extracted from wells.